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Abstract

Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a
species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene
content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it
underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight
chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of
rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral
genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile
chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained
by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci
at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary
breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the
gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the
uptake of alternative nutrient sources.
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Introduction

Inferring the genome organization and gene content of an

extinct species has the potential to provide detailed information

about the recent evolution of species descended from it. If we know

what was present in the genome of an ancestor, we can deduce

how a current-day descendant differs from it. We can then ask

questions about how it came to be different. The most recent

changes in a genome are often the most interesting ones, because

they reflect the most recent (or even current) evolutionary

pressures acting on that genome [1,2].

Yeast species offer the potential for the precise reconstruction of

ancestral genomes, because many genomes have been sequenced

and they show extensive colinearity of gene order among species

[3–6]. As the number of sequenced genomes from related species

rises, so does the precision with which we can reconstruct their

history. In this study we compare the genomes of a group of

species in the subphylum Saccharomycotina, spanning an

evolutionary time-depth that is comparable to that of the

vertebrates [7]. A whole-genome duplication (WGD) event

occurred during the evolution of this subphylum [8], and we can

compare the genomes of several species (including S. cerevisiae) that

are descended from this event to the genomes of several species

that branched off before the WGD occurred. We focus on an

ancestor that existed approximately 100–200 Mya, at the point

immediately before the WGD occurred. The evolutionary period

beginning with this ancestor corresponds to a time during which

the S. cerevisiae lineage became increasingly adapted to rapid

fermentative growth [9,10] and extensive rearrangement of the

genome occurred (including the deletion of thousands of

redundant copies of duplicated genes) [11].

Previous studies in other systems have employed both manual

and computational approaches to reconstructing ancestral ge-

nomes. One of the most successful applications of computational

methods has been the estimation of the ancestral order of

orthologous genes in the common ancestor of 12 Drosophila

species [12,13]. Ancestral reconstruction is more difficult when

ancient polyploidizations are present [14]. In studies of the 2R

duplications in vertebrates, for example, the emphasis has been on

establishing the ancestral gene content of paralogous chromosomal

regions rather than on their precise gene order [15,16]. We chose

to use a manual, parsimony-based, approach to reconstructing the

yeast ancestor at the point of WGD. The manual approach has the

attractions of being tractable (whereas computational methods are

still under development [17,18]), of providing an independent

result to which computational results can be compared, and of

forcing us to examine every rearrangement event without

prejudice as to what mechanism might have caused it.

Sankoff and colleagues [14,17,18] have developed computa-

tional methods that aim to reconstruct ancestral gene order in

datasets that include polyploidizations. In recent work [18], they
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evaluated their ‘guided genome halving’ (GGH) algorithm by

comparing its results to ours, using a preliminary version of the

manually-derived ancestral yeast gene order that we report here as

a ‘gold standard’. As currently implemented, the GGH algorithm

can only consider input from a single post-WGD genome and 1–2

non-WGD outgroups, and only considers genes that are

duplicated in the post-WGD genome.

Inferring the set of genes that existed in a yeast ancestor, and

the order of those genes along the chromosomes, is of interest

from both genome-evolutionary and organismal-evolutionary

standpoints. Knowing the ancestral gene order enables us to

trace all the inter- and intra-chromosomal rearrangements that

occurred en route from this ancestor to the current S. cerevisiae

genome, which is informative about the molecular mechanisms of

evolutionary genome rearrangement and is also phylogenetically

informative. Knowing the ancestral gene content allows us to

identify genes that have been added to, or lost from, the S.

cerevisiae genome during the past 100 Myr. Previous studies have

shown that changes in gene content can provide a strong

indication of changing evolutionary circumstances, either in cases

of gene loss (such as the losses of GAL, DAL and BNA genes in

Candida glabrata [1,19,20]) or in cases of gene gain (such as the

ADH2 and URA1 genes of S. cerevisiae [9,21,22]). Even though it

may not be possible to conclude that any particular gene gain was

adaptive, the clear links between the functions of the gained genes

ADH2 and URA1 and the adaptation of S. cerevisiae to a

fermentative lifestyle [23] suggested to us that a systematic search

for all the genes that were gained by S. cerevisiae since WGD

would be worthwhile.

Results/Discussion

Ancestral Genome Reconstruction
We used a manual parsimony approach to reconstruct the gene

order and gene content of the yeast ancestor that existed

immediately prior to WGD (Figure 1). The reconstruction was

made by visually comparing the local gene orders in every region

of the genome, stepping through the genome in overlapping 25-

gene windows using the Yeast Gene Order Browser [YGOB; 6].

Initially, during 2007–08, we compared data from five post-WGD

species (S. cerevisiae, S. bayanus, C. glabrata, Naumovia castellii and

Vanderwaltozyma polyspora) and three non-WGD species (E. gossypii,

Kluyveromyces lactis and Lachancea waltii) and inferred an ancestral

genome based on these data. Later, in 2009, we added the

genomes of three more non-WGD species (Zygosaccharomyces rouxii,

L. thermotolerans and L. kluyveri [24]) and re-examined the whole

genome window-by-window using YGOB. This process confirmed

that our initial ancestral reconstruction was largely correct, but

identified a few places where the gene content or local gene order

in the ancestor needed to be revised. In particular, by adding data

from more non-WGD species we were able in some cases to detect

non-WGD orthologs of S. cerevisiae genes that are short and

rapidly-evolving, which previously appeared to be unique to S.

cerevisiae (for example, YLR146W-A).

The gene order and content of the ancestor were inferred as

shown in Figure 1B,C. We first established the gene content, and

then examined the adjacency relationships among these genes.

Within any post-WGD species such as S. cerevisiae, most of the

genome can be sorted into pairs of sister regions that have a

double-conserved synteny (DCS) relationship with any non-WGD

species such as L. waltii [25,26]. Breaks in the DCS pattern

correspond to two types of event, called single-breaks and double-

breaks of synteny [26]. For each single-break of synteny

(Figure 1B), because we have genome sequences from multiple

post-WGD species, and because the endpoints of the chromosomal

rearrangements in different species generally do not coincide, we

can infer the species and chromosomal track on which the break

happened. This inference also tells us the ancestral gene order

across the site of breakage: in general, for a single break, the

ancestral order has been disrupted in one track in one post-WGD

species, but it is still conserved in the same track from the other

post-WGD species, in the sister track from all the post-WGD

species, and in the non-WGD species. Similarly for each double-

break of synteny (Figure 1C), because we have multiple genome

sequences from non-WGD species we can in general identify the

break as having occurred in one particular non-WGD species. A

small number of double-breaks of synteny are caused by situations

where all the non-WGD species show one gene order but both of

the tracks from all the post-WGD species show a different order.

These breaks correspond to rearrangements that occurred on the

branch between the Z. rouxii divergence and the common ancestor

of the post-WGD species (before the WGD happened). We do not

include these breaks in our analysis because we are only interested

in events that occurred after the WGD.

Manual reconstruction by this method resulted in an inferred

ancestral genome with eight chromosomes, containing 4703

protein-coding genes. The ancestral gene set represents the

intersections of orthologous genes between non-WGD and post-

WGD species, and between ohnologs (paralogs formed by WGD)

across the post-WGD species. The ancestral genome is listed in

Table S1 and can be browsed using YGOB (http://wolfe.gen.tcd.

ie/ygob). Genes in this genome were given names such as

Anc_1.125, meaning the 125th gene on chromosome 1 of the

ancestor. The ancestral gene set accounts for 5158 (92%) of the

5601 genes currently present in S. cerevisiae (1088 ohnologs and

4070 single copy genes), which covers all genomic regions in S.

cerevisiae except for the subtelomeric regions (discussed below). The

S. cerevisiae genome can be mapped onto the inferred ancestral

genome in 182 DCS blocks that tile together in an unambiguous

2:1 fashion across the ancestral genome (Figure 2). Similarly, the

other post-WGD species and non-WGD species can be mapped

onto the ancestral genome, with 2:1 and 1:1 mappings,

respectively, by the numbers of blocks shown in Figure 1A. The

C. glabrata genome is much more rearranged (582 blocks) than S.

cerevisiae as previously noted [19,27]. The L. kluyveri genome is

remarkably unrearranged, with the whole genome mapping into

just 57 blocks relative to the ancestor.

Author Summary

Genomes evolve in structure as well as in DNA sequence.
We used data from 11 different yeast species to investigate
the process of structural evolution of the genome on the
evolutionary path leading to the bakers’ yeast S. cerevisiae.
We focused on an ancestor that existed about 100 million
years ago. We were able to deduce almost the complete
set of genes that existed in this ancestor and the order of
these genes along its chromosomes. We then identified
the complete set of more than 100 structural rearrange-
ments that occurred as this ancestor evolved into S.
cerevisiae and found that some places in the genome seem
to be fragile sites that have been broken repeatedly during
evolution. We also identified 124 genes that must be
relatively recent additions into the S. cerevisiae genome
because they were not present in this ancestor. These
genes include several that play roles in the unique lifestyle
of this species, as regards the intensive production and
consumption of alcohol.

Ancestral Yeast Genome
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Figure 1. Inferring ancestral gene content and gene order. (A) Phylogenetic relationships among the species considered (not to scale;
topology from ref. [89]), and the position of the ancestor whose genome was reconstructed. The dot indicates the whole-genome duplication.
Numbers of genomic rearrangements (reciprocal translocations and inversions) shared by post-WGD clades are shown above the branches (Table S2).
The numbers on the right show the number of genomic blocks shared by each species and the reconstructed ancestor. Asterisks indicate block
numbers that are probably overestimates because the corresponding genome sequences are fragmented into many contigs. (B,C) Principles of the
parsimony method for ancestral genome reconstruction. Colors represent continuous chromosomal regions. For simplicity the diagrams show only
one non-WGD species and one post-WGD species, but in practice we used all the species shown in panel A. We infer that a gene was present in the
ancestor if it is present in at least one non-WGD species and one track of a post-WGD species, or if paralogs are present on both post-WGD tracks.
Genes found only on one post-WGD track, or only in non-WGD species, cannot be inferred to have been present in the ancestor and are marked with
red crosses. Two types of scenario for gene order rearrangement can exist [26]. In each case the inferred ancestral order is shown on the right. (B)
Single break of synteny. Gene order is conserved between a non-WGD species and one of the two tracks in a post-WGD species, due to a
rearrangement on the other track after WGD. (C) Double break of synteny. The two tracks from the post-WGD species agree with each other but
disagree with the non-WGD species. The ancestor is inferred to have the gene order present in the post-WGD species.
doi:10.1371/journal.pgen.1000485.g001

Ancestral Yeast Genome
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Our inferred ancestral genome is incomplete in some regards:

– The reconstructed gene order and content covers only the

internal regions of chromosomes, extending out to the

approximate borders of the subtelomeric regions where synteny

conservation stops. The gene content in subtelomeric regions is

different in every species and the dynamic nature of these

regions makes it impossible to trace evolutionary events over

long timescales [28,29]. In S. cerevisiae, for example, a total of

299 genes are located in subtelomeric regions that lie beyond

the ends of the ancestral reconstruction. These genes make up

the majority of the 443 S. cerevisiae genes that do not have

counterparts in the ancestral genome (the others are 124

gained genes that will be discussed later, and 20 transpositions

as described in the next paragraph).

– We only included a gene in the ancestral genome if we could be

confident about its location at the time of WGD, so genes that

transposed at approximately the same time as the WGD are

not included. An example is DAL1, which is single-copy in all

genomes but at a different site in the post-WGD and non-

WGD species [30]. Twenty S. cerevisiae genes fell into this

category; we did not count them as gains because they were

probably present in the ancestral genome, but we do not know

where.

– We cannot detect genes that may have been present in the

ancestor at the moment of WGD but were subsequently lost, in

both copies, by all the post-WGD species considered. The

MATa2 HMG domain gene is a possible example [31,32].

– It can be difficult to determine whether fast-evolving genes are

orthologous. There are a few points in the genome where we

can identify a group of rapidly-evolving orthologs among post-

WGD species, and a group of rapidly-evolving orthologs

among non-WGD species, but we cannot establish whether the

two groups are themselves orthologous. An example is S.

cerevisiae YJL144W (with orthologs in four post-WGD species)

and L. thermotolerans KLTH0F05478g (with orthologs in four

non-WGD species), both of which lie in the interval between

Anc_1.205 and Anc_1.206, and have similar sizes and

transcriptional orientation but no significant sequence similar-

ity.

– The local gene order in the ancestor is uncertain in a few

places, because none of the extant species retains all of the

relevant genes.

Rearrangement Route to the Current S. cerevisiae
Genome

Using the breakpoints between S. cerevisiae synteny blocks in the

ancestral genome, we inferred the large scale chromosomal

rearrangements that have occurred in the S. cerevisiae lineage since

the WGD. Most rearrangement events could be classified as either

reciprocal translocations (Figure 3) or inversions. Note that it is

impossible to count inversions and reciprocal translocations with

absolute precision, because if a genomic region that contains one

endpoint of a reciprocal translocation subsequently undergoes

inversion, the result is identical to one that could be produced by

two successive reciprocal translocations (Figure S1). We counted

these situations as two reciprocal translocations, so we have

probably misclassified some inversions as reciprocal translocations.

Inversions were defined as events where the two endpoints of the

rearrangement were on the same ancestral chromosome and on

the same post-WGD track.

Figure 2. Synteny relationship between the reconstructed ancestral genome and the modern S. cerevisiae genome. Each colored block
represents a region in S. cerevisiae that is colinear with a region of the ancestral genome. The 182 double-conserved-synteny blocks in S. cerevisiae
map onto the ancestor in a 2:1 pattern. Colors correspond to the 16 modern S. cerevisiae chromosomes as shown at the bottom.
doi:10.1371/journal.pgen.1000485.g002

Ancestral Yeast Genome
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In total we inferred 73 inversion events and 66 reciprocal

translocations events on the evolutionary path from the ancestor to

S. cerevisiae (Table 1). Five of the inversions have endpoints at

telomeres. There were also five non-reciprocal translocations, which

we call ‘telomeric translocations’ because they involved an exchange

between a telomere and an internal region of another chromosome,

which moved the end of an arm from one chromosome to another

(one of these events occurs at a shared inversion/translocation

breakpoint). The data indicate that some intergenic regions were re-

used as breakpoints in more than one rearrangement event. We

classified the rearrangements as consisting of 34 simple inversion

events (not overlapping other inversions or reusing breakpoints), 39

complex inversion events (overlapping other rearrangements and/or

reusing breakpoints), 44 simple reciprocal translocation events, and

22 reciprocal translocation events involving breakpoint reuse

(Figure 4). These results are in reasonable agreement with our

estimate from a decade ago of 70–100 rearrangement events, based

only on S. cerevisiae data [33].

If some post-WGD species share a rearrangement relative to the

ancestor but others retain the ancestral gene order, the

rearrangement event is a phylogenetically informative character

[34,35]. We searched for rearrangements shared by any pair of

post-WGD species. As described below, we found many that

support the branching order of the post-WGD species shown in

Figure 1A (Table S2). We did not find any shared rearrangements

supporting alternative topologies. This result supports our previous

conclusion, based on shared patterns of gene losses, that N. castellii

is an outgroup to a clade containing C. glabrata and S. cerevisiae

[11,36]. In contrast, phylogenies based on sequence analysis tend

to place C. glabrata outside N. castellii and S. cerevisiae [1,37,38], a

result that we believe is an artifact.

Given this phylogeny, the post-WGD species define four

temporal intervals for rearrangements (Figure 1A): (i) no rearrange-

ments are shared by all the post-WGD species relative to the

ancestor; (ii) 8 rearrangement events are shared by N. castellii, C.

glabrata and S. cerevisiae (6 inversions, 1 reciprocal translocation, 1

telomeric translocation); (iii) 19 rearrangements are shared only by

C. glabrata and S. cerevisiae, with N. castellii and V. polyspora retaining

the ancestral organization (13 inversions, 6 reciprocal transloca-

tions); and (iv) 117 rearrangements are unique to S. cerevisiae or

shared by this species and S. bayanus (54 inversions, 59 reciprocal

translocations, 4 telomeric translocations). Most of the rearrange-

ments that are specific to S. cerevisiae are temporally ambiguous

relative to each other. We did not subdivide the group of 117 events

into those that occurred before and after the S. bayanus divergence

because the S. bayanus genome assembly is quite fragmented. The

above analysis does not include gene transpositions, which we find

to be relatively rare in yeast genomes but which are difficult to count

precisely because to identify a transposed gene in a particular

species, we need to be certain that it is orthologous to a gene at a

non-syntenic location in the ancestral genome.

Figure 3. Example of a simple reciprocal translocation in S.
cerevisiae. Parts of two ancestral chromosomes, ANC5 and ANC2, are
shown at the top. After WGD, these formed four chromosomes (labeled
Post5A, Post5B, Post2A, Post2B), each of which retains a subset of the
ancestral gene sets. Parts of S. cerevisiae chromosomes XI and XIV are
derived from chromosomes Post5A and Post2A, respectively, without
further rearrangement. A reciprocal translocation between chromo-
somes Post5B and Post2B gave rise to part of S. cerevisiae chromosomes
XV and IX.
doi:10.1371/journal.pgen.1000485.g003

Table 1. Breakpoint re-use in S. cerevisiae.

Event type Number of events Number of breakpoints Re-use ratioa

Expected Observed

Reciprocal translocations 66 132 118 1.12

Inversions 73 141b 126 1.16

Telomeric translocations 5 5 5 1.00

All events 144 278 228c 1.22

aRatio of expected to observed breakpoints.
bFive inversion events occur at telomeres, so each makes only one breakpoint.
c21 breakpoints are shared by a reciprocal translocation and an inversion.
doi:10.1371/journal.pgen.1000485.t001

Ancestral Yeast Genome
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The lack of rearrangements in the first time interval is notable

because it indicates that V. polyspora separated from the other

lineages soon after the WGD. We also found that no rearrange-

ments occurred on one genomic track of all the post-WGD species,

relative to the other track and the ancestor, prior to this speciation.

This observation argues against the possibility that the WGD event

Figure 4. Reciprocal translocations that formed the S. cerevisiae genome from the ancestral genome. Each point on the circle represents
a breakpoint, and names two genes (separated by a | symbol) that were adjacent in the ancestral genome but became separated by reciprocal
translocation on the S. cerevisiae lineage. These breakpoints form the ends of the synteny blocks shown in Figure 2. The genes at the breakpoints are
arranged according to their current positions on the S. cerevisiae chromosomes, so each breakpoint appears twice in the circle (once for each end,
usually on different chromosomes). Green backgrounds join the names of pairs of breakpoints that were formed by simple reciprocal translocation
events. As an example, the pink dots highlight the new junctions on chromosomes IX and XV that were formed by the simple reciprocal translocation
shown in Figure 3, involving the breakpoints YOR084W|YIL143C and YOR085W|YIL142W. In cases of breakpoint reuse, the genes on one side of the pair
of breakpoints are adjacent in S. cerevisiae, but the genes on the other side are not. By iteratively linking each of the non-matching genes to the gene
that is adjacent to it in the S. cerevisiae genome, we can describe groups of 3–5 reciprocal translocation events with breakpoints that have been used
more than once (colored arcs). We observed one event where a breakpoint created by a telomeric translocation was reused (dashed gray line).
Telomeric translocation events are indicated by gray backgrounds on breakpoint names. This diagram is an adjacency graph [90] applied to a
genome halving context [91,92].
doi:10.1371/journal.pgen.1000485.g004

Ancestral Yeast Genome
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was an allopolyploidization rather than an autopolyploidization

(see ref. [11] for discussion): if it was an allopolyploidization, then

the two hybridizing genomes must have been completely colinear.

Breakpoint Re-Use and Properties of Breakpoint Sites
It was necessary to infer breakpoint reuse at the ends of some

synteny blocks. Reused breakpoints appear as cycles in the map of

breakpoint pairs (Figure 4). The evolutionary re-use of breakpoints

has previously been identified in studies on mammals and

Drosophila [13,39]. We find that for both reciprocal translocations

and inversions, there are fewer breakpoints than expected if every

event had unique ends (Table 1). The average number of breaks

per used site is 1.12 for reciprocal translocations and 1.16 for

inversions. Some sites were used as endpoints of both an inversion

and a reciprocal translocation, and if we pool these two categories

there are only 228 unique breakpoints instead of the expected 278,

implying an average of 1.22 breaks per site (Table 1).

We identified 96 sites in the ancestral genome at which genes

are inferred to have been gained subsequently in the lineage

leading to S. cerevisiae. The total number of gained genes is 124,

because some sites contain groups of consecutive gained genes

(Figure 5). We were surprised to find that 33 (34%) of these ‘gene

gain’ sites are beside tRNA genes. tRNA genes have previously

been linked to sites of genomic rearrangement between E. gossypii

and S. cerevisiae [26]. Furthermore, it is known that origins of

replication in yeast are often located near tRNA genes [40], and it

seems plausible that origins might be fragile sites for evolutionary

breakage and/or integration of new DNA. We used computer

simulation to test the significance of the associations among tRNA

genes, origins of replication, evolutionary breakpoints, and sites of

gene gain (see Methods). tRNA genes are present at breakpoints and

gain sites about three times more often than expected by chance

(Table 2, rows 2 and 3), and origins are present about twice as

often (Table 2, rows 4 and 5). It should be noted however that the

locations of all the tRNA genes are known whereas it is probable

that many origins have not yet been identified [41].

There are several plausible mechanisms by which tRNA genes

could precipitate genomic rearrangements. tRNA genes exist in

multiple near-identical copies in the genome, so illegitimate

recombination between these sequences could result in reciprocal

translocations [42,43]. Ty retroelements tend to integrate beside

tRNA genes and provide long sections of near-identical sequence

scattered around the genome that could be substrates for ectopic

recombination, as seen in S. cerevisiae irradiation experiments [44].

Ty LTRs, tRNA genes, and origins of replications have also all

been associated with the endpoints of spontaneous segmental

DNA duplications in S. cerevisiae [45]. Replication forks tend to stall

near highly-expressed genes (such as tRNA genes), and sites of

replication fork collapse are hotspots for chromosomal rearrange-

ments [46,47]. It is also possible that the Ty-encoded reverse

transcriptase has played a direct role in the integration of new

genes into sites beside tRNA genes, similar to the way that cDNA

fragments of transcribed genes are sometimes captured at sites of

double-strand break repair in S. cerevisiae experiments [48].

Categories of Gained Genes
We identified 124 genes, excluding those in subtelomeric

regions, that are inferred to have been gained on the lineage

leading to S. cerevisiae during the time since WGD (Figure 5). The

S. cerevisiae gene set that we used in this study consists only of

genes that are conserved between S. cerevisiae and at least one of

the other Saccharomyces sensu stricto species (dN/dS ratio,1 in the

analysis of Kellis et al. [49]), or that are duplicates of other genes

in S. cerevisiae (again with dN/dS,1), so we can be confident that

the all the gains we identity are real genes and not annotation

artifacts. Some of the gained genes are unique to S. cerevisiae and

sensu stricto species, while others are shared by the other post-

WGD species (Figure 5).

The 124 gained genes range from those with high similarity to

another gene in the S. cerevisiae genome to those with no similarity

to any known gene from any organism. We classified the gained

genes into nine groups as described in Figure 5, and then into

three larger categories according to their apparent mechanism of

formation. The three large categories are:

– Dispersed duplications, where a progenitor gene that remains in a

conserved syntenic context became duplicated to produce a

new gene at a new site in the genome, and so appears as an

insertion relative to the ancestral order. An example is ADH2,

which was made by duplication of ADH1. For the simple

dispersed duplications in group 6 of Figure 5, the availability of

the ancestral genome reconstruction allows us to identify which

gene of the pair is the parent of the other.

– Tandem duplications, such as the array of three Na+ ion

transporters ENA1, ENA2 and ENA5 (group 9). In this example

the ancestral genome has one ENA gene at the syntenic

location, so we arbitrarily designated ENA2 and ENA5 as ‘new’

genes in S. cerevisiae. For some other S. cerevisiae tandem arrays

(such as the CUP1 array and others in group 8) there is no gene

at the syntenic location in the ancestral genome. Many of these

arrays are known to be polymorphic in size among strains of S.

cerevisiae [50,51].

– Orphan gene gains, where a gene that appears as an insertion

relative to the ancestral gene order has no apparent

progenitor. Some orphans (groups 4, 5 and 7) are members

of orphan families, where all members of the family are

insertions relative to the ancestor. In some cases (groups 3 and

5) orphan genes contain an identifiable protein domain but

there is no other gene that is similar enough in sequence to be

regarded as a possible progenitor of the orphan. It is possible

that some of the loci we have classified as orphan gene gains

are in fact older genes that were present in the ancestral

genome but are evolving so rapidly that the homology

between the post-WGD and the non-WGD sequences is

unrecognizable; some loci where this situation may apply are

marked in Figure 5.

Functions of Genes Gained in the S. cerevisiae Lineage
Since WGD

Analysis of the functions of the gained genes should provide

insight into the evolutionary pressures that have acted on S.

cerevisiae in the period since WGD but, remarkably, there is no

functional information in the Saccharomyces Genome Database

(SGD) for almost half of the recently gained genes. None of the

124 genes is essential when deleted, according to SGD. The non-

essentiality of gained genes is not surprising because they were

gained by an organism that was already fully functional in its

environment before they were gained. It is particularly notable

that only 16 of the 51 orphans in Figure 5 have been assigned

genetic names, which would indicate that something is known

about their function.

In the sections below, we discuss some of the functional groups

of gained genes. The gene information in these sections is derived

primarily from summaries in the SGD and YPD databases

[52,53], and from a MIPS (Munich Information Centre for

Protein Sequences) catalog analysis.

Ancestral Yeast Genome
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Figure 5. The 124 non-telomeric genes that were gained on the S. cerevisiae lineage since WGD. Colored backgrounds indicate genes that
are adjacent and may have been gained simultaneously.
doi:10.1371/journal.pgen.1000485.g005
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Lifestyle Adaptations
Ethanol production and consumption. Thomson et al. [9]

identified a group of recently-duplicated genes in S. cerevisiae that

are implicated in that species’ ecological strategy of making,

accumulating and consuming ethanol. This strategy enables S.

cerevisiae to out-compete other microorganisms by monopolizing

the available resources of glucose. S. cerevisiae is able to take up

glucose rapidly because it can achieve a high flux through

glycolysis, which occurs because pyruvate (the end product of

glycolysis) is not allowed to accumulate [54,55]. Pyruvate is

converted to ethanol and excreted from the cell, instead of

entering the relatively slow step of import into the mitochondria

and respiration via the TCA cycle. Later, when external glucose is

exhausted, the ethanol can be re-imported and respired. This

make-and-consume strategy provides a competitive advantage, but

at a cost of a slightly lower net yield of ATP per glucose molecule.

There is also a risk that ethanol excreted by a cell might not be

recovered, due to evaporation or consumption by other cells.

Thomson et al. [9] identified the duplication that formed ADH2 as

the key step in the development of this strategy, and identified five

other gene family expansions that they suggested were also

involved and occurred at about the same time. Our approach is

independent of Thomson et al.’s (using synteny rather than a

molecular clock), and our results confirm that several of the genes

they identified – ADH2, PDC5, TDH1, PHO3, PHO5 – were all

added to the S. cerevisiae genome in the time since the WGD. We

also identify a second pyruvate decarboxylase gene, PDC6, as a

recent gain, and the PHO3/PHO5-related gene DIA3.

Thiamin uptake and biosynthesis. Thiamin diphosphate

(ThDP) is an essential cofactor of decarboxylase enzymes,

including the pyruvate decarboxylases (the ancestral gene PDC1

and the gained genes PDC5 and PDC6) that function in ethanol

production. Our gained gene set includes at least six genes that are

involved in the ThDP pathway. In this pathway, the precursor

thiamin phosphate (TP) is converted to the intermediate molecule

thiamin (vitamin B1), which in turn is converted to the biologically

active molecule ThDP [56]. Two gained genes, THI21 and

THI22, code for enzymes that synthesize TP. Two more, PHO3

and PHO5 (and possibly also DIA3), code for extracellular acid

phosphatases that dephosphorylate TP found outside the cell to

form thiamin, which can then be imported. Two other gained

genes, THI71 and THI72, have been characterized as transporters

of thiamin. Interestingly, S. cerevisiae and the sensu stricto species are

prototrophic for thiamin, whereas the other post-WGD species

considered here are not [57,58], which is likely a result of these

multiple recent gene gains. THI71 ( = NRT1) also functions as a

high-affinity transporter of nicotinamide riboside, a precursor in

NAD biosynthesis [59]. As ThDP is essential in many metabolic

pathways, the gain of additional transporters of exogenous thiamin

and of biosynthesis genes may represent an important shift in the

physiology of S. cerevisiae. One possibility, suggested by Thomson et

al. [9] in the context of the PDC and PHO gene duplications, is that

selection for increased ethanol production resulted in increased

demand for thiamin as a cofactor of pyruvate decarboxylase.

Hypoxic growth. Several previous studies have suggested

that S. cerevisiae has become increasingly adapted towards growth

in conditions of low oxygen [23,30,60], and the set of gained genes

includes several (in addition to the ADH, PDC and THI

duplications) whose presence can be interpreted in this context.

One way in which S. cerevisiae has adapted is by reducing its

dependence on biochemical pathways that use molecular oxygen.

The genes DAL4 and DAL7 were gained (by duplication) during a

reorganization of the purine degradation pathway to eliminate an

oxygen-requiring step [30]. Oxygen is also required for the

biosynthesis of sterols, which are an essential component of

membranes [61]. Two of the gained genes, AUS1 and PDR11, are

ABC transporters that play major roles in the uptake of sterols

from outside the cell under anaerobic conditions [62].

Gene Family Expansions
Escaped members of subtelomeric gene families. Most

yeasts have species-specific gene family amplifications in their

subtelomeric regions [28,29,63]. In S. cerevisiae the major

subtelomeric families are the DAN/TIR, PAU and DUP240

families. We were unable to reconstruct the gene order in the

subtelomeric regions of the ancestral genome, so our

reconstruction excludes most members of these families.

Nevertheless, the set of recent gains in S. cerevisiae includes some

members that became relocated to internal sites on chromosomes.

There are nine members of the DUP240 family in the gained set,

Table 2. Significance of observed colocalized elements in S. cerevisiae.

Row Pattern of colocalized elements

Observed
number in
genome

Simulation
mean

Proportion of
simulations$Observed PFDR

tRNA Origin Breakpoint Gene gain

1 + + 2 2 31 11.5 261026 4.461026

2 + 2 + 2 32 9.7 161026 1.161025

3 + 2 2 + 13 4.0 0.00018 0.00032

4 2 + + 2 19 10.6 0.0096 0.015

5 2 + 2 + 9 4.4 0.032 0.035

6 2 2 + + 6 3.8 0.17 0.19

7 + + + 2 15 0.5 161026 5.561026

8 + + 2 + 9 0.2 161026 3.761026

9 + 2 + + 11 0.2 161026 2.861026

10 2 + + + 2 0.2 0.018 0.022

11 + + + + 1 0.0 0.0098 0.013

PFDR, statistical significance after correction for false discovery rate.
doi:10.1371/journal.pgen.1000485.t002
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including six in a tandem array on chromosome I. The DUP240

genes are nonessential membrane spanning proteins that have

been suggested to function in membrane trafficking [64]. The

gained genes PAU2, PAU5, PAU7, PAU17, DAN2, TIP1, TIR2 and

TIR4 all code for either cell wall or integral membrane proteins,

and are induced by anaerobiosis [65,66]. TIP1, TIR2, TIR4 and

DAN2 all appear to function in the remodeling of the cell wall and

plasma membrane in response to altered environmental conditions

such as anaerobiosis or cold shock [66,67].

Rapidly evolving families of unknown function. The

gained gene set includes some uncharacterized and highly

divergent families of orphan genes (groups 4 and 5 in Figure 5).

The largest is a family of five genes related to YPR071W (Figure 6).

There is no obvious progenitor for this family in the ancestral

genome, and there are no homologs in the NCBI databases

outside the sensu stricto species. None of the five has a phenotype

when deleted [52]. The family is highly divergent, with only 10%

amino acid sequence identity between the most divergent pair

(Figure 6A); they can be recognized as a family because YPR071W

hits the four other members in a BLASTP search (E#0.004).

Interestingly, all five genes are located beside tRNA genes

(Figure 6B). We also identified two other orphan families with

similarly high levels of divergence and no apparent progenitor.

Each of these families contains one member that has been given a

genetic name (ABM1, with an aberrant microtubules phenotype,

and IRC10 with a possible DNA recombination phenotype;

[68,69]). The mechanism by which these families originated and

diversified is unclear.

GATA family transcription factors. Another rapidly

evolving family of gained genes contains transcription factors

with GATA zinc finger domains [70]. Four of the nine proteins

with this domain in S. cerevisiae have been gained since WGD

(Figure 5). ECM23 is involved in cell wall morphogenesis and may

be a negative regulator of genes for pseudohyphal growth [71].

Figure 6. The YPR071W gene family in S. cerevisiae. All members of this family were gained by S. cerevisiae since WGD and all are located near
tRNA genes. (A) T-Coffee multiple alignment of the five proteins. Black and grey backgrounds show residues that are identical or similar, respectively,
in $3 sequences. (B) Maps of the genomic regions around each gene. Red, YPR071W family members; orange, tRNA genes; blue, other genes in the
gained set; white, Ty elements and long terminal repeats; gray, genes in the ancestral set (only the first gene on each side is shown). Tick marks
indicate intervals of 1 kb.
doi:10.1371/journal.pgen.1000485.g006
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SRD1 was identified as a suppressor of a mutation in RRP1, which

codes for a nucleolar protein involved in rRNA maturation [72].

Very little is known about the functions of GAT3 and GAT4 [73].

Curiously, the functions of the other (non-gained) GATA factors in

S. cerevisiae are much better defined; they are four regulators of

nitrogen metabolism (GLN3, GAT1, DAL80, DEH1) [74] and the

ASH1 repressor of HO endonuclease [75].

Other Changes
RSF1, a domesticated transposable element. One of the

gained genes, RSF1 (YMR030W), is required for respiratory growth

on glycerol (a non-fermentable carbon source) [76]. Rsf1 plays a

role in transcriptional changes that occur during the metabolic

shift from (fermentative) glycerol synthesis to (respiratory) glycerol

catabolism [77], and may be a transcription factor [78] or a

protein that interacts with transcription factors [77]. We find that

RSF1 is a truncated member of a gene family that exists in about

five copies in V. polyspora (e.g., Kpol_387.6) and N. castellii (e.g.,

Scas_707.15d), and in two copies in L. kluyveri (SAKL0H14366g and

SAKL0H03916g). PSI-BLAST searches show that these proteins in

the other yeast species are related to the hAT family of DNA

transposons [79]. The hAT family is ubiquitous in plants, animals,

and filamentous fungi but has not been previously reported to be

present in Saccharomycotina species [80]. The V. polyspora and N.

castellii members of the family are integrated at species-specific sites

and show higher sequence similarity within species than between

species, consistent with them being transposable. RSF1 is

integrated at a site that is specific to the Saccharomyces sensu stricto

species. It codes for a protein of only 376 amino acids,

corresponding to the N-terminus of a protein that is typically

,900 amino acids in the other yeasts, and does not retain the

region with highest similarity to the hAT family. The part retained

in RSF1 is likely to be the DNA-binding domain, though we could

not find the BED finger DNA-binding motif that is present at the

N-terminus of some hAT proteins [81,82].

Importantly, RSF1 is conserved at the same location in S.

cerevisiae and S. bayanus and has a dN/dS ratio of 0.22, which

indicates that its protein sequence is subject to selective constraint

even in the absence of transposition. We suggest that RSF1 is

derived from a hAT element, but was recruited to perform a

cellular function in S. cerevisiae. Sequence polymorphism in RSF1

has been found to be one of the main causes of variation in

sporulation efficiency among natural isolates of S. cerevisiae, which

could place the gene under strong selection although some null

alleles have also been identified [78]. The L. kluyveri gene

SAKL0H03916g may be a second (older) example of a domesti-

cated hAT transposon [81], because orthologs of this gene have

been retained in a syntenic location in many yeast species

(including the S. cerevisiae WGD pair VID22 and YGR071C).

Other gained genes. Also notable among the gained genes

are several involved in catabolism of alternative nitrogen sources

(asparaginases ASP3-1, ASP3-2, ASP3-3, ASP3-4; cytosine

transporter FCY21; DAL4 and DAL7 in the allantoin pathway),

ion homeostasis (ENA2 and ENA5 for Na+ efflux, and PMA2 for H+

efflux), drug resistance (AZR1 and FLR1 in the MFS superfamily,

and AUS1, PDR10 and PDR11 in the ABC superfamily), defense

against oxidative stress (glutathione S-transferases GTO1 and

GTO3 [83], the LOT6 sensor of redox state [84], and OYE3 which

detoxifies small a,b unsaturated aldehydes such as acrolein, a

product of oxidative attack on lipids [85]), and two genes

(YGL039W, YGL157W) coding for oxidoreductases related to

GRE2.

Genes lost in S. cerevisiae. At 88 loci in the ancestral

genome, S. cerevisiae retained neither of the gene copies after WGD.

We know that they were present in the ancestor because they have

been retained syntenically in at least one other post-WGD species

and in at least one non-WGD species. Most of these losses involve

genes of unknown function, but among the others are some that

can be related to changes in the physiology of S. cerevisiae, such as

loss of the oxygen-requiring enzyme D-amino acid oxidase [30]

and the loss of URA9 which was displaced by URA1, so decoupling

uracil biosynthesis from mitochondrial respiration [21]. Other S.

cerevisiae-specific losses are more puzzling, such as its loss of an

ortholog of the K. lactis high-affinity glucose/galactose transporter

HGT1 (KLLA0A11110g) [86].

Conclusion
Reconstructing the content and gene order of the ancestral yeast

genome just prior to WGD has provided a mechanism for studying

the structural rearrangements that occurred subsequent to WGD.

Our reconstruction is dependant on the set of extant genomes

available for comparison, so it is likely that our list of candidate

gene gains includes some false positives that will turn out to have

been present at the time of WGD. As more genome sequences

become available the ancestral gene set will become progressively

more complete and the list of gains may shrink.

From a biological perspective, the main shortcoming of our

work is that we were unable to reconstruct the telomeric regions of

the genome, corresponding to the last ,10 genes on each arm of

each chromosome in S. cerevisiae. These regions turn over so

dynamically that synteny breaks down almost completely between

the species considered here. This is unfortunate because many of

the most interesting evolutionary events such as the gain of genes

by horizontal gene transfer (HGT) from other species [22], seem to

occur preferentially near telomeres. Our set of candidate gene

gains in S. cerevisiae contains only two possible cases of gene gain by

HGT at internal chromosomal sites (YLR011W/LOT6 and

YLR012W; we did not study these in detail), whereas Hall et al.

[22] found eight examples of apparent transfer of bacterial genes

into telomeric sites. A second shortcoming is that we relied on

sequence conservation (dN/dS,1) among the sensu stricto species as

a way of distinguishing between genuine S. cerevisiae genes and

annotation artifacts, which had the inadvertent effect that we

overlooked any genes that may have been gained by S. cerevisiae in

the time since it diverged from the other sensu stricto species; one

such case is BSC4, which appears to have been formed de novo in S.

cerevisiae [87].

The set of genes inferred to have been gained on the S. cerevisiae

lineage is relatively small (2% of the gene set) and their functions

point squarely towards increasing adaptation to the ‘fermentative

lifestyle’ [23]. They indicate increasing throughput of the glycolysis

and fermentation pathways, and adaptation towards growth in

conditions with little oxygen, including modifications to the cell

wall and the bypass of biochemical pathways that require

molecular oxygen by importing substances from outside the cell.

There are also many gained genes in our set that we have not

discussed in detail here because they did not fall into larger

functional groups. Further analysis of these gains on an individual

basis may reveal insights into the evolution of S. cerevisiae and the

other species in the WGD clade.

Methods

Nomenclature
In this paper we have adopted the revised genus nomenclature

proposed by Kurtzman [88]: Saccharomyces castellii becomes

Naumovia castellii; Kluyveromyces polysporus becomes Vanderwaltozyma

polyspora; Ashbya gossypii becomes Eremothecium gossypii; Kluyveromyces
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waltii becomes Lachancea waltii; Kluyveromyces thermotolerans becomes

Lachancea thermotolerans; and Saccharomyces kluyveri becomes Lachancea

kluyveri. In this scheme each genus name refers to a monophyletic

group, whereas previously Saccharomyces and Kluyveromyces were

polyphyletic. We did not change any gene names, even though in

many species the gene names have a prefix that is an acronym of

the obsolete species name.

Counting DCS and Synteny Blocks
The numbers of double-conserved synteny (DCS) and synteny

blocks between the reconstructed ancestor and each other species

(Figure 1A) were counted automatically using an algorithm that

smoothes over small inversions and other interruptions in cases

where endpoints are #20 genes apart in the ancestral genome. For

S. cerevisiae our manual analysis identified 228 breakpoints (Table 1

and Figure 4), which subdivide the 16 linear chromosomes into

244 segments. The discrepancy in numbers between these 244

segments and the 182 DCS blocks in S. cerevisiae (Figures 1A and 2)

is due to the use of the smoothing algorithm.

Evolution of Ancestral Organization into S. cerevisiae
Gene Order

We described the inferred ancestral gene order in terms of

synteny blocks of current Saccharomyces cerevisiae genes. We

manually identified intrachromosomal rearrangements (inversions)

between the ancestor and S. cerevisiae and reversed them, revising

our synteny blocks, in order to more easily identify the endpoints

of reciprocal translocations. For each synteny block end not at a

telomere, the location is at a position in the ancestral genome that

underwent a reciprocal translocation in its transition towards the

current S. cerevisiae genome. Each synteny block end in the

ancestral genome is bordered by another synteny block found

elsewhere in the current S. cerevisiae genome. The two breakpoints

at the ends of two ancestral synteny blocks now adjacent in the

current S. cerevisiae genome were created by a reciprocal

translocation event that joined them together from different

ancestral locations. Concurrently the other synteny blocks that

border each breakpoint in the ancestral genome were joined

together by the same event. We ordered the synteny blocks in the

manner in which they are found along each chromosome in S.

cerevisiae, thus inferring all the interchromosomal rearrangements

between the ancestral polyploid genome and S. cerevisiae (Figure 4).

To confirm that the inferred reciprocal translocation events were

correct, we found the location in S. cerevisiae of the other synteny

block ends joined by each event. In cases where these synteny

blocks are not adjacent in the S. cerevisiae genome, we found the

ancestral breakpoint locations of the blocks that are adjacent to

each of these blocks in S. cerevisiae, inferring another reciprocal

translocation event. If the synteny blocks bordering each break-

point were again not adjacent, this process was repeated.

Inference and Analysis of Probable Gene Gains in the S.
cerevisiae Lineage since the WGD

To obtain a set of likely gene gains (Figure 5) we subtracted the

set of S. cerevisiae genes represented in the ancestral genome from

the curated set of 5601 S. cerevisiae genes currently used in YGOB.

YGOB’s S. cerevisiae gene set is based on the SGD annotation

(‘verified’ and ‘uncharacterized’ protein-coding loci only) with

some additional manual curation. It omits loci that failed Kellis et

al.’s test of reading frame conservation among sensu stricto species

[49]. S. cerevisiae genes that are present in YGOB set but absent

from the inferred ancestral set are candidates for having been

gained in the S. cerevisiae lineage after the WGD. We did not

include subtelomeric genes from the YGOB set, as orthologous

relationships across species break down at the telomeres [49]. This

candidate set of gains was then manually checked to ensure that

there were no possible non-syntenic homologs that were ancestral

but missing from our ancestral genome reconstruction due to a

breakdown of synteny information. Any cases where a good

candidate non-syntenic homolog was found were removed from

the gained set and flagged as a likely transposition event. It is

possible that the set of candidate gained genes may also contain

ancestral genes that were lost in all of the non-WGD species used

here but have orthologs in more distantly related outgroups.

Testing for Coincidence of tRNAs, Origins, Breakpoints,
and Gene Gains

We compiled lists of the 245 S. cerevisiae intergenic regions that

contain one or more tRNA genes [from SGD; 52], the 228

intergenic regions that contain evolutionary breakpoints on the S.

cerevisiae lineage, the 96 sites of gene gain in S. cerevisiae, and 267

intergenic regions that contain an origin of replication in S.

cerevisiae (from OriDB [41]; we included origins that overlap with

genes). We counted the numbers of intergenic regions that contain

combinations of multiple types of site.

We then used computer simulation to estimate the significance

of the observed numbers of coinciding sites (Table 2). In each of 1

million replicates we simulated a genome with 5100 intergenic

spacers (the estimated number of intergenic spacers between S.

cerevisiae genes that are at an ancestral locus). We placed the same

numbers of tRNA genes, origins, breakpoints, and gene gain sites

as above into randomly chosen spacers in the simulated genome.

Each type of site was placed randomly and independently of the

other types of site. We then counted the numbers of spacers

containing all possible combinations of types of site in the

replicate. Finally, we compared the observed numbers of

coinciding sites in the real data to the distribution of results from

the simulation (Table 2). The proportion of simulated genomes in

which the number of sites with a particular colocalization pattern

matches or exceeds the observed number of such sites in the real

genome is an empirical measure of the statistical significance of the

observation, under the null hypothesis of a random distribution of

sites. We then applied a false discovery rate correction to these

empirical P-values.

Supporting Information

Figure S1 Some inversions can be indistinguishable from

reciprocal translocations. Numbers 1–8 represent genomic seg-

ments, and minus symbols indicate inverted orientation. The

upper part shows the effect of a reciprocal translocation (RT)

followed by an inversion (inv) of a region that includes one

endpoint of the RT. The lower part shows a scenario of two

consecutive RTs. The two scenarios produce the same final order

of genomic segments, so it is not possible to tell which scenario is

correct.

Found at: doi:10.1371/journal.pgen.1000485.s001 (0.24 MB PDF)

Table S1 Excel file listing the genes of the reconstructed

ancestral genome in order through its 8 chromosomes, and their

orthologs in modern genomes.

Found at: doi:10.1371/journal.pgen.1000485.s002 (1.87 MB

XLS)

Table S2 Genomic rearrangements shared among post-WGD

species.

Found at: doi:10.1371/journal.pgen.1000485.s003 (0.02 MB

XLS)
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and Áine Rourke and Estelle Proux for comments on the manuscript.

Author Contributions

Conceived and designed the experiments: JLG KHW. Performed the

experiments: JLG. Analyzed the data: JLG KPB KHW. Wrote the paper:

JLG KHW. Integrated the data into YGOB: KPB.

References

1. Hittinger CT, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL

pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci U S A

101: 14144–14149.

2. Hall C, Dietrich FS (2007) The reacquisition of biotin prototrophy in

Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and
gene clustering. Genetics 177: 2293–2307.

3. Keogh RS, Seoighe C, Wolfe KH (1998) Evolution of gene order and

chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast 14:
443–457.

4. Llorente B, Malpertuy A, Neuveglise C, de Montigny J, Aigle M, et al. (2000)
Genomic Exploration of the Hemiascomycetous Yeasts: 18. Comparative

analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett

487: 101–112.

5. Dujon B (2005) Hemiascomycetous yeasts at the forefront of comparative

genomics. Curr Opin Genet Dev 15: 614–620.

6. Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining

curated homology and syntenic context reveals gene fate in polyploid species.

Genome Res 15: 1456–1461.

7. Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome

evolution. Trends Genet 22: 375–387.

8. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of

the entire yeast genome. Nature 387: 708–713.

9. Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, et al. (2005)
Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics 37:

630–635.

10. Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did

Saccharomyces evolve to become a good brewer? Trends Genet 22: 183–186.

11. Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, et al. (2007)
Independent sorting-out of thousands of duplicated gene pairs in two yeast

species descended from a whole-genome duplication. Proc Natl Acad Sci U S A
104: 8397–8402.

12. Bhutkar A, Gelbart WM, Smith TF (2007) Inferring genome-scale rearrange-
ment phylogeny and ancestral gene order: a Drosophila case study. Genome Biol

8: R236.

13. Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, et al. (2008)
Chromosomal rearrangement inferred from comparisons of 12 Drosophila

genomes. Genetics 179: 1657–1680.

14. Sankoff D, Zheng C, Zhu Q (2007) Polyploids, genome halving and phylogeny.

Bioinformatics 23: i433–439.

15. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, et al. (2004)
Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early

vertebrate proto-karyotype. Nature 431: 946–957.

16. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the

vertebrate ancestral genome reveals dynamic genome reorganization in early

vertebrates. Genome Res 17: 1254–1265.

17. Zheng C, Zhu Q, Sankoff D (2008) Descendants of whole genome duplication

within gene order phylogeny. J Comput Biol 15: 947–964.

18. Zheng C, Zhu Q, Adam Z, Sankoff D (2008) Guided genome halving: hardness,

heuristics and the history of the Hemiascomycetes. Bioinformatics 24: i96–104.

19. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, et al. (2004) Genome
evolution in yeasts. Nature 430: 35–44.

20. Domergue R, Castano I, De Las Penas A, Zupancic M, Lockatell V, et al. (2005)
Nicotinic acid limitation regulates silencing of Candida adhesins during UTI.

Science 308: 866–870.

21. Gojkovic Z, Knecht W, Zameitat E, Warneboldt J, Coutelis JB, et al. (2004)
Horizontal gene transfer promoted evolution of the ability to propagate under

anaerobic conditions in yeasts. Mol Genet Genomics 271: 387–393.

22. Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to

the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4: 1102–1115.

23. Merico A, Sulo P, Piskur J, Compagno C (2007) Fermentative lifestyle in yeasts
belonging to the Saccharomyces complex. Febs J 274: 976–989.

24. Sherman DJ, Martin T, Nikolski M, Cayla C, Souciet JL, et al. (2009)
Genolevures: protein families and synteny among complete hemiascomycetous

yeast proteomes and genomes. Nucleic Acids Res 37: D550–554.

25. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of
ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:

617–624.

26. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, et al. (2004) The Ashbya

gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome.

Science 304: 304–307.

27. Fischer G, Rocha EP, Brunet F, Vergassola M, Dujon B (2006) Highly variable

rates of genome rearrangements between hemiascomycetous yeast lineages.
PLoS Genet 2: e32.

28. Louis EJ (1995) The chromosome ends of Saccharomyces cerevisiae. Yeast 11:

1553–1573.

29. Fairhead C, Dujon B (2006) Structure of Kluyveromyces lactis subtelomeres:

duplications and gene content. FEMS Yeast Res 6: 428–441.

30. Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive

gene relocation. Nature Genetics 37: 777–782.

31. Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, et al. (2004) Evolution
of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad

Sci U S A 101: 1632–1637.

32. Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution of alternative

transcriptional circuits with identical logic. Nature 443: 415–420.

33. Seoighe C, Wolfe KH (1998) Extent of genomic rearrangement after genome

duplication in yeast. Proc Natl Acad Sci U S A 95: 4447–4452.

34. Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient

evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci U S A

84: 5818–5822.

35. Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, et al. (1992) Gene order

comparisons for phylogenetic inference: evolution of the mitochondrial genome.
Proc Natl Acad Sci U S A 89: 6575–6579.

36. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds
of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:

341–345.

37. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the

‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS

Yeast Res 3: 417–432.

38. Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the

beginning of incongruence? Trends Genet 22: 225–231.

39. Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal

extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A
100: 7672–7677.

40. Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, et al. (2001)
Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-

resolution mapping of replication origins. Science 294: 2357–2360.

41. Nieduszynski CA, Hiraga S, Ak P, Benham CJ, Donaldson AD (2007) OriDB: a
DNA replication origin database. Nucleic Acids Res 35: D40–46.

42. Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal
evolution in Saccharomyces. Nature 405: 451–454.

43. Pratt-Hyatt MJ, Kapadia KM, Wilson TE, Engelke DR (2006) Increased
recombination between active tRNA genes. DNA Cell Biol 25: 359–364.

44. Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, et al. (2008)
Double-strand breaks associated with repetitive DNA can reshape the genome.

Proc Natl Acad Sci U S A 105: 11845–11850.

45. Payen C, Koszul R, Dujon B, Fischer G (2008) Segmental duplications arise

from Pol32-dependent repair of broken forks through two alternative

replication-based mechanisms. PLoS Genet 4: e1000175.

46. Labib K, Hodgson B (2007) Replication fork barriers: pausing for a break or

stalling for time? EMBO Rep 8: 346–353.

47. Admire A, Shanks L, Danzl N, Wang M, Weier U, et al. (2006) Cycles of

chromosome instability are associated with a fragile site and are increased by
defects in DNA replication and checkpoint controls in yeast. Genes Dev 20:

159–173.

48. Maxwell PH, Curcio MJ (2007) Retrosequence formation restructures the yeast

genome. Genes Dev 21: 3308–3318.

49. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature

423: 241–254.

50. Fogel S, Welch JW (1982) Tandem gene amplification mediates copper

resistance in yeast. Proc Natl Acad Sci U S A 79: 5342–5346.

51. Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK (1995) The PMR2

gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the

yeast plasma membrane. Embo J 14: 3870–3882.

52. Nash R, Weng S, Hitz B, Balakrishnan R, Christie KR, et al. (2007) Expanded

protein information at SGD: new pages and proteome browser. Nucleic Acids
Res 35: D468–471.

53. Hodges PE, McKee AH, Davis BP, Payne WE, Garrels JI (1999) The Yeast
Proteome Database (YPD): a model for the organization and presentation of

genome-wide functional data. Nucleic Acids Res 27: 69–73.

54. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the

evolution of ATP-producing pathways. Science 292: 504–507.

55. Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-

genome duplication in yeast. Mol Syst Biol 3: 129.

56. Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon
in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276: 147–161.

57. Wightman R, Meacock PA (2003) The THI5 gene family of Saccharomyces

cerevisiae: distribution of homologues among the hemiascomycetes and functional

redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbi-
ology 149: 1447–1460.

Ancestral Yeast Genome

PLoS Genetics | www.plosgenetics.org 13 May 2009 | Volume 5 | Issue 5 | e1000485



58. Hua Q, Araki M, Koide Y, Shimizu K (2001) Effects of glucose, vitamins, and

DO concentrations on pyruvate fermentation using Torulopsis glabrata IFO 0005
with metabolic flux analysis. Biotechnol Prog 17: 62–68.

59. Belenky PA, Moga TG, Brenner C (2008) Saccharomyces cerevisiae YOR071C

encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem
283: 8075–8079.

60. Piskur J (2001) Origin of the duplicated regions in the yeast genomes. Trends
Genet 17: 302–303.

61. Raychaudhuri S, Prinz WA (2006) Uptake and trafficking of exogenous sterols in

Saccharomyces cerevisiae. Biochem Soc Trans 34: 359–362.
62. Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, et al. (2002)

Transcriptional profiling identifies two members of the ATP-binding cassette
transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:

32466–32472.
63. Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN (2007) Conserved

processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot

Cell 6: 2269–2277.
64. Despons L, Wirth B, Louis VL, Potier S, Souciet JL (2006) An evolutionary

scenario for one of the largest yeast gene families. Trends Genet 22: 10–15.
65. Rachidi N, Martinez MJ, Barre P, Blondin B (2000) Saccharomyces cerevisiae PAU

genes are induced by anaerobiosis. Mol Microbiol 35: 1421–1430.

66. Abramova N, Sertil O, Mehta S, Lowry CV (2001) Reciprocal regulation of
anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces

cerevisiae. J Bacteriol 183: 2881–2887.
67. Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, et al. (2006) Genome-

wide expression analysis of yeast response during exposure to 4 degrees C.
Extremophiles 10: 117–128.

68. Entian KD, Schuster T, Hegemann JH, Becher D, Feldmann H, et al. (1999)

Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a
systematic approach. Mol Gen Genet 262: 683–702.

69. Alvaro D, Lisby M, Rothstein R (2007) Genome-wide analysis of Rad52 foci
reveals diverse mechanisms impacting recombination. PLoS Genet 3: e228.

70. Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:

126–131.
71. Canizares JV, Pallotti C, Sainz-Pardo I, Iranzo M, Mormeneo S (2002) The

SRD2 gene is involved in Saccharomyces cerevisiae morphogenesis. Arch Microbiol
177: 352–357.

72. Hess SM, Stanford DR, Hopper AK (1994) SRD1, a S. cerevisiae gene affecting
pre-rRNA processing contains a C2/C2 zinc finger motif. Nucleic Acids Res 22:

1265–1271.

73. Cox KH, Pinchak AB, Cooper TG (1999) Genome-wide transcriptional analysis
in S. cerevisiae by mini-array membrane hybridization. Yeast 15: 703–713.

74. Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces

cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS

Microbiol Rev 26: 223–238.

75. Munchow S, Ferring D, Kahlina K, Jansen RP (2002) Characterization of
Candida albicans ASH1 in Saccharomyces cerevisiae. Curr Genet 41: 73–81.

76. Lu L, Roberts G, Simon K, Yu J, Hudson AP (2003) Rsf1p, a protein required
for respiratory growth of Saccharomyces cerevisiae. Curr Genet 43: 263–272.

77. Roberts GG, Hudson AP (2009) Rsf1p is required for an efficient metabolic shift

from fermentative to glycerol-based respiratory growth in S. cerevisiae. Yeast 26:

95–110.

78. Gerke J, Lorenz K, Cohen B (2009) Genetic interactions between transcription

factors cause natural variation in yeast. Science 323: 498–501.

79. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common

evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo,

Activator, and Tam3. Cell 66: 465–471.

80. Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT

transposon superfamily. Genetics 158: 949–957.

81. Aravind L (2000) The BED finger, a novel DNA-binding domain in chromatin-

boundary-element-binding proteins and transposases. Trends Biochem Sci 25:

421–423.

82. Hickman AB, Perez ZN, Zhou L, Musingarimi P, Ghirlando R, et al. (2005)

Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol

12: 715–721.

83. Herrero E (2005) Evolutionary relationships between Saccharomyces cerevisiae and

other fungal species as determined from genome comparisons. Rev Iberoam

Micol 22: 217–222.

84. Sollner S, Schober M, Wagner A, Prem A, Lorkova L, et al. (2009) Quinone

reductase acts as a redox switch of the 20S yeast proteasome. EMBO Rep 10:

65–70.

85. Trotter EW, Collinson EJ, Dawes IW, Grant CM (2006) Old yellow enzymes

protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ

Microbiol 72: 4885–4892.

86. Baruffini E, Goffrini P, Donnini C, Lodi T (2006) Galactose transport in

Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res 6:

1235–1242.

87. Cai J, Zhao R, Jiang H, Wang W (2008) De novo origination of a new protein-

coding gene in Saccharomyces cerevisiae. Genetics 179: 487–496.

88. Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces

and other members of the Saccharomycetaceae, and the proposal of the new

genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora.

FEMS Yeast Res 4: 233–245.

89. Hedtke SM, Townsend TM, Hillis DM (2006) Resolution of phylogenetic

conflict in large data sets by increased taxon sampling. Syst Biol 55: 522–529.

90. Bergeron A, Mixtacki J, Stoye J (2006) A unifying view of genome
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